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Computing Granger causal relations among bivariate experimentally observed time series has received
increasing attention over the past few years. Such causal relations, if correctly estimated, can yield significant
insights into the dynamical organization of the system being investigated. Since experimental measurements
are inevitably contaminated by noise, it is thus important to understand the effects of such noise on Granger
causality estimation. The first goal of this paper is to provide an analytical and numerical analysis of this
problem. Specifically, we show that, due to noise contamination, �1� spurious causality between two measured
variables can arise and �2� true causality can be suppressed. The second goal of the paper is to provide a
denoising strategy to mitigate this problem. Specifically, we propose a denoising algorithm based on the
combined use of the Kalman filter theory and the expectation-maximization algorithm. Numerical examples are
used to demonstrate the effectiveness of the denoising approach.
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I. INTRODUCTION

Granger causality �1� has become the method of choice to
determine whether and how two time series exert causal in-
fluences on each other. In this method one starts by modeling
simultaneously acquired time series as coming from a mul-
tivariate or vector autoregressive �VAR� stochastic process.
One time series is said to have a causal influence on the other
if the residual error in the autoregressive model of the second
time series �at a given point of time� is reduced by incorpo-
rating past measurements from the first. This method and
related methods have found applications in a wide variety of
fields including physics �2–7�, economics �1,10–12�, and
neuroscience �8,9�. Its nonlinear extension has recently ap-
peared in �13� and has been applied to study problems in
condensed matter physics �14�.

The statistical basis of Granger causality estimation is lin-
ear regression. It is known that regression analysis is sensi-
tive to the impact of measurement noise �15�. Given the in-
evitable occurrence of such noise in experimental time
series, it is imperative that we determine whether and how
such added noise can adversely affect Granger causality es-
timation. Previous studies �16� have suggested that such ad-
verse effects can indeed occur. In this paper, we make further
progress by obtaining analytical expressions that explicitly
demonstrate how the interplay between measurement noise
and system parameters affects Granger causality estimation.
Moreover, we show how this deleterious effect of noise can
be reduced by a denoising method, which is based on the
Kalman filter theory and the expectation-maximization �EM�
algorithm. We refer to our denoising algorithm as the Kal-
man EM �KEM� denoising algorithm.

The organization of this paper is as follows. In Sec. II, we
start by introducing an alternative formulation of Granger
causality �17� and proceed to outline a framework within
which the effects of added �measurement� noise on the esti-
mation of directional influences in bivariate autoregressive
processes can be addressed. To simplify matters, we then
consider a bivariate first-order autoregressive �AR�1�� pro-
cess in Sec. III. Here explicit expressions for the effect of
noise on Granger causality are derived. These expressions
allow us to show that, for two time series that are unidirec-
tionally coupled, spurious causality can arise when noise is
added to the driving time series and true causality can be
suppressed by the presence of noise in either time series. The
theoretical results are illustrated by numerical simulations. In
Sec. IV, we briefly introduce the KEM denoising algorithm
and apply it to the example considered in Sec. III. Our results
show that the KEM algorithm can mitigate the effects of
noise and restore the true causal relations between the two
time series. In Sec. V, we consider a coupled neuron model
which produces time series that closely resemble that re-
corded in neural systems. The effect of noise on Granger
causality and the effectiveness of the KEM algorithm in miti-
gating the noise effect are illustrated numerically. Our con-
clusions are given in Sec. VI.

II. THEORETICAL FRAMEWORK

Consider two time series X�t� and Y�t�. To compute
Granger causality, we model them as a combined bivariate
autoregressive process of order p. In what follows, the model
order p is assumed to be known, since this aspect is not
central to our analysis. The bivariate autoregressive model
can then be represented as

�
k=0

p

�akX�t − k� + bkY�t − k�� = E1�t� , �1�
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�
k=0

p

�ckX�t − k� + dkY�t − k�� = E2�t� , �2�

where ak, bk, ck, and dk are the AR coefficients and Ei�t� are
the temporally uncorrelated residual errors.

For our purposes, it is more convenient to rewrite the
above bivariate process as two univariate processes �this can
always be done according to �17��

P1�B�X�t� = ��t� . P2�B�Y�t� = ��t� , �3�

where B is the lag operator defined as BkX�t�=X�t−k� and P1

and P2 are polynomials �of possibly infinite order� in the lag
operator B. It should be noted that the new noise terms ��t�
and ��t� are no longer uncorrelated. Let �12�k� denote the
covariance at lag k between these two noises:

�12�k� � cov„��t�,��t − k�… k = . . . ,− 1,0,1, . . . . �4�

A theorem by Pierce and Haugh �17� states that Y�t� causes
X�t� in the Granger sense if and only if

�12�k� � 0 for some k � 0. �5�

Similarly X�t� causes Y�t� if and only if �12�k��0 for some
k�0.

Now we add measurement noises ���t� and ���t� to X�t�
and Y�t�, respectively:

X�c��t� = X�t� + ���t� , �6�

Y�c��t� = Y�t� + ���t� . �7�

Here ���t�, ���t� are uncorrelated white noises that are un-
correlated with X�t�, Y�t�, ��t�, and ��t�. Following Newbold
�16�, the above equations can be rewritten as

P1�B�X�c��t� = P1�B�X�t� + P1�B����t� , �8�

P2�B�Y�c��t� = P2�B�Y�t� + P2�B����t� . �9�

Using Eq. �3� we get

P1�B�X�c��t� = ��t� + P1�B����t� , �10�

P2�B�Y�c��t� = ��t� + P2�B����t� . �11�

Following the procedure in Granger and Morris �18�, the
linear combination of white noise processes on the right hand
sides can be rewritten in terms of invertible moving average
processes �19�:

��t� + P1�B����t� = P3�B���c��t� , �12�

��t� + P2�B����t� = P4�B���c��t� , �13�

where ��c� and ��c� are again uncorrelated white noise pro-
cesses. Thus we get

P3
−1�B�P1�B�X�c��t� = ��c��t� ,

P4
−1�B�P2�B�Y�c��t� = ��c��t� . �14�

This is again in the form of two univariate AR processes.
Therefore the theorem of Pierce and Haugh can be applied to

yield the result that the noisy signal Y�c��t� causes X�c��t� in
the Granger sense if and only if

�12
�c��k� � cov„��c��t�,��c��t − k�… � 0, �15�

for some k�0. Similarly X�c��t� cause Y�c��t� if and only if

�12
�c��k� � 0, �16�

for some k�0.
We can relate �12

�c� to �12 as follows. Consider the corre-
sponding covariance generating functions �which are nothing
but the z transforms of the cross covariances�

�̄12�z� = �
k=−�

�

�12�k�zk,

�̄12
�c��z� = �

k=−�

�

�12
�c��k�zk. �17�

We can show that �16�

�̄12
�c��z� = P3

−1�z�P4
−1�z−1��̄12�z� . �18�

Even if �12�k�=0 for all k�0 �i.e., X does not cause Y� it is
possible that �12

�c��k��0 for some negative k because of the
additional term P3

−1�z�P4
−1�z−1� that has been introduced by

the measurement noise. This gives rise to spurious Granger
causality �X�c� causes Y�c��, which is a consequence of the
added measurement noise.

III. A BIVARIATE AR(1) PROCESS

In the previous section, we demonstrated that measure-
ment noise can affect Granger causality. But the treatment
given was quite general in nature. In this section we special-
ize to a simple bivariate AR�1� process and obtain explicit
expressions for the effect of noise on Granger causality.

Consider the following bivariate AR�1� process:

X�t� = aX�t − 1� + bY�t − 1� + E1�t� ,

Y�t� = dY�t − 1� + E2�t� . �19�

From the above expressions, it is clear that Y drives X for
nonzero values of b and X does not drive Y in this model.
More specifically, we see that Y at an earlier time t−1 affects
X at the current time t. There is no such corresponding in-
fluence of X on Y.

When noises ���t� and ���t� with variances ���
2 and ���

2 ,
respectively, are added to the data generated by Eq. �19�,
after some algebra �see the Appendix for details�, we find the
following expressions for P3�B� and P4�B�:

P3�B� = 1 + a1�B + a2�B
2, P4�B� = 1 − d�B . �20�

Here

d� =
s ± �s2 − 4

2
, �21�

where

NALATORE, DING, AND RANGARAJAN PHYSICAL REVIEW E 75, 031123 �2007�

031123-2



s � �1

d
+ d	 +

1

d

��
2

���
2 . �22�

The expressions for a1� and a2� are very long and for our
purposes it is sufficient to note that they go to zero as the
added noise goes to zero �as expected�. We see that 
s
�2 for
any values of d, ��

2 , and ���
2 . Therefore �S2−4 and hence d�

are well defined. We also have the following results:
�a� as 
d
→0, 
d�
� 
d
→0;

�b� as d→1, d�→1+
��

2

2���
2 −

��
2

2���
2 �1+4/

��
2

���
2 ;

�c� as the ratio
��

2

���
2 →0, d�→d;

�d� as the ratio
��

2

���
2 →�, d�→0.

Substituting the expressions for P3�B� and P4�B� in Eq.
�18� we get

�̄12
�c��z� = �1 + a1�z + a2�z

2�−1�1 − d�z−1�−1�̄12�z� . �23�

We now expand both sides in powers of z:

¯ + �12
�c��− 1�z−1 + �12

�c��0� + �12
�c��1�z + ¯

= �1 − a1�z + �a1
2 − a2��z

2 + ¯ �

	 �1 + d�z−1 + d�2z−2 + ¯ �

	�¯ + �12�− 1�z−1 + �12�0� + �12�1�z + ¯ � .

�24�

Collecting terms proportional to z−1 ,z0 ,z1, etc., we obtain the
following expressions for the cross covariances at lag −1, 0,
and 1:

�12
�c��− 1� = d��1 − a1�d� + ¯ ���12�0� + d��12�1� + ¯ � ,

�25�

�12
�c��0� = �1 − a1�d� + ¯ ���12�0� + d��12�1� + ¯ � ,

�26�

�12
�c��1� = �12�1� − a1��12�1� − a1�d��12�1� + ¯ . �27�

We observe that �12
�c��k� for k�0 �and in particular �12

�c��−1��
is no longer zero, implying that the X�c� drives Y�c�, thus
giving rise to a spurious causal direction. The spurious cau-
sality term �12

�c��−1� is proportional to d�. This can be shown
to be true for all the other spurious terms �12

�c��k� , k�−1, as
well. Hence they all go to zero if d�→0 �i.e., if Y has no
measurement noise�. This happens even if a1� and a2� are non-
zero �i.e., even if the X measurement is contaminated by
noise�. Hence we arrive at an important conclusion that, if Y
is driving X, only measurement noise in Y can cause spurious
causality. If Y has no measurement noise, no amount of mea-
surement noise in X can lead to spurious causality. Further,
using the asymptotic properties of d� listed earlier, we can
easily see that the magnitude of the spurious causality in-
creases as d→1 and as the ratio ��

2 /���
2 →0.

The foregoing demonstrates that noise can lead to spuri-
ous causal influences that are not part of the underlying pro-
cesses. Here we show that the true causality terms ��12�k� for
k�0� are also modified by the presence of noise. They un-

dergo a change even if d�=0. For example, �12�1� is changed
to �12�1�−a1��12�0� even if d�=0. Therefore, it is quite pos-
sible that even a true causal direction can be masked by
added noise and the measurement noises in both time series
contribute to this suppression. As the ratios ��

2 /���
2 and

��
2 /���

2 →�, a1� ,a2� ,d� all go to zero and �12
�c�→�12, as ex-

pected.
We make one final observation. If we replace z by ei2
f

�where f is the frequency� in the covariance generating func-
tion �cf. Eq. �17�� we obtain the cross spectrum. Hence all
the above results carry over to the spectral or frequency do-
main.

To illustrate the above theoretical results, we estimate the
Granger causality spectrum �in the frequency domain� for a
bivariate AR process numerically. First, we briefly summa-
rize the theory behind this computation �9�. The bivariate AR
process given in Eq. �1� can be written as:

�
k=0

p

A�k�Z�t − k� = E�t� , �28�

where Z�t�= �X�t� ,Y�t��T, E�t�= �E1�t� ,E2�t��T and

A�k� = �− ak − bk

− ck − dk
	 , �29�

for 1�k� p. A�0� is the 2	2 identity matrix. Here, E�t� is a
temporally uncorrelated residual error with covariance ma-
trix �. We obtain estimates of the coefficient matrices A�k�
by solving the multivariate Yule-Walker equations �20� using
the Levinson-Wiggins-Robinson �LWR� algorithm �21�.
From A�k� and � we estimate the spectral matrix S�f� by the
relation

S�f� = H�f��H*�f� , �30�

where H�f�= ��k=0
p A�k�e−2
ikf�−1 is the transfer function of

the system.
The Granger causality spectrum from Y to X is given by

�9,22� �see also �23��

IY→X�f� = − ln�1 −
��22 − �12

2 /�11�
H12�f�
2

S11�f�
	 . �31�

Here, �11, �22, and �12 are the elements of � and S11�f� is
the power spectrum of X at frequency f . Hij�f� is the �ij�th
element of the transfer function matrix H�f�. Similarly, the
Granger causality spectrum from X to Y is defined by

IX→Y�f� = − ln
1 −
��11 − �12

2 /�22�
H21�f�
2

S22�f� � , �32�

and S22�f� is the power spectrum of Y at frequency f .
We now estimate the Granger causality spectrum for the

specific AR�1� process given in Eq. �19� where Y drives X
and X does not drive Y. The parameter values used are a
=0.4, b=0.6, d=0.9, ��=0.2, and ��=1.0. We obtain two
time series X and Y by numerically simulating the VAR
model and then adding Gaussian measurement noise with
���=0.2 and ���=2.5. For concreteness we assume that each
time unit corresponds to 5 ms. In other words, the sampling
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rate is 200 Hz, and thus the Nyquist frequency is 100 Hz.
The data set consists of 100 realizations, each of length
250 ms �50 points�. These 100 realizations are used to obtain
expected values of the covariance matrices in the LWR and
KEM algorithms �see the next section�. The Granger causal-
ity spectra IX→Y�f� and IY→X�f� are plotted in Fig. 1. The
solid lines represents the true causality spectra while the
dashed lines represent the noisy causality spectra.

Similarly, we also simulated the following bivariate
AR�2� process:

X�t� = aX�t − 1� + bY�t − 1� + E1�t� ,

Y�t� = d1Y�t − 1� + d2Y�t − 2� + E2�t� . �33�

The values of the parameters a and b used were the same as
in the previous AR�1� process example �Eq. �19�� except for
the values of the new parameters d1 and d2 which were cho-
sen to be 0.4 and 0.5, respectively. We again obtained two
time series X and Y and then added Gaussian measurement
noise with ���=0.2 and ���=2.5 to X and Y, respectively.
The Granger causality spectra IX→Y�f� and IY→X�f� are plot-
ted in Fig. 2. As before, the solid lines and dashed lines
represent the true causality spectra and noisy causality spec-
tra, respectively.

We observe that the measurement noise has a dramatic
effect in both of these cases: It completely reverses the true
causal directions. For the noisy data, X appears to drive Y
and Y does not appear to drive X.

The above theoretical and numerical results bring out
clearly the adverse effect that noise can have on correctly
determining directional influences. The same is also true for
other quantities like the power spectrum and coherence.
Therefore it is imperative that the effect of noise be mitigated
to the extent possible.

IV. THE KEM DENOISING ALGORITHM

In the previous section we have seen that noisy data can
lead to grave misinterpretation of directional influences. We
now provide a practical solution to this problem by combin-
ing the Kalman smoother with the expectation-maximization
algorithm �24�. The detailed algorithm is long and tedious.
We outline the main logical steps below.

The Kalman filter �25� is a standard algorithm for denois-
ing noisy data. To apply this, we first need to recast a VAR
process with measurement noise in the so-called state-space
form. This is nothing but the difference equation analog of
converting a higher-order differential equation to a system of
first-order differential equations. Once this is done, our VAR
model takes on the following form:

xt+1 = Axt + wt+1, �34�

yt = Cxt + vt. �35�

Here xt is an M 	1 �“true”� state vector at time t. A is an
M 	M state matrix. wt is a zero-mean Gaussian independent
and identically distributed random variable with covariance
matrix Q. Bivariate AR�p� models can be put in the form
xt+1=Axt+wt+1 by defining M =2p auxiliary variables xi,t.
The N	1 vector yt is the observed or measured value of xt
in N channels. C is an N	M observation matrix and is a
fixed, known matrix for VAR models. Hence we will ignore
this in future discussions. The N	1 vector vt is the measure-
ment noise which has zero mean, and is Gaussian and inde-
pendent and identically distributed with covariance matrix R.

Kalman filter, however, cannot be directly applied to de-
noise experimental or observed data since it assumes the
knowledge of the model describing the state-space dynamics.
In practice, such knowledge is often not available. To get
around this problem, we apply the Kalman smoother in con-
junction with the expectation and maximization algorithm
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FIG. 1. Granger causality spectra for a bivariate AR�1� process.
�a� Causality of X→Y. �b� Causality of Y →X. The solid lines rep-
resent true causality spectra and the dashed lines represent spectra
from noisy data.
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FIG. 2. Granger causality spectra for a bivariate AR�2� process.
�a� Causality of X→Y. �b� Causality of Y →X. The solid lines rep-
resent true causality spectra and the dashed lines represent spectra
from noisy data.
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�24,26–28�. Thus, this denoising algorithm will henceforth
be called the KEM algorithm. In this algorithm, one follows
the standard procedure for estimating state-space parameters
from data using the maximum likelihood method. The appro-
priate likelihood function in our case is the joint log likeli-
hood log P��x� , �y�� where �x� denotes �xt� �for all t� and
similarly for �y�. In the usual maximum likelihood method,
P would not depend on x and we would therefore maximize
the above quantity directly �conditioned on the observed yt
values� and obtain the unknown state-space parameters. But
in our case, P depends on x which is also unknown. To get
rid of x, we take the expected value of the log likelihood

O = E�log P��x�,�y��
�y�� .

As usual, we have conditioned the expectation on the known
observations �y�.

To compute O, it turns out we need the expectations of x
and xxT �where T denotes the transpose� conditioned on y.
These expectations are obtained by applying the Kalman
smoother on the noisy data. We use the Kalman smoother
and not the Kalman filter since we are utilizing all the obser-
vations y instead of only the past observations. This is the
appropriate thing to do in our case since we are performing
an off-line analysis where all observations are known. In
other words, in the Kalman smoother, we perform both a
forward pass and a backward pass on the data in order to
make use of all observations.

To apply the Kalman smoother, however, we still need the
state-space model parameters �just as in the Kalman filter
case�. To circumvent this problem, we start with initial esti-
mates for these parameters �A, Q, and R� as follows. From
the noisy data, using the LWR algorithm, we obtain the VAR
model coefficient matrices �8�. Then a standard transforma-
tion �25� is used to put these matrices in the state-space form
giving the initial estimate for A. The initial estimate of Q is
taken to be the identity matrix following the standard proce-
dure �25�. The initial estimate of R is taken to be half the
covariance matrix at lag zero of the noisy data. The approxi-
mate model order can be determined by applying the akaike
information criterion �AIC� �29� in the LWR algorithm. This
step is admittedly rather ad hoc. Further studies to optimize
the above initial estimates and the VAR model order p are
currently being carried out. Once we have initial estimates of
the model parameters, we can apply the Kalman smoother to
obtain the various conditional expectations and evaluate the
expected log likelihood O. This is called the expectation �E�
step.

Next, we go to the maximization �M� step. Each of the
parameters A ,Q ,R, etc. is reestimated by maximizing O. Us-
ing these improved estimates, we can apply the E step again
followed by the M step. This iterative process is continued
untill the value of log likelihood function converges to a
maximum. We could now directly use the VAR parameters
estimated from the KEM algorithm for further analysis as is
usually done. But here we prefer to use the following proce-
dure which was found to yield better performance. The final
denoised data �that is, the estimate of x obtained from the
KEM algorithm� are treated as the new experimental time
series and subjected to parametric spectral analysis from

which Granger causality measures can be derived. The Matlab

code implementing this algorithm for our applications is
available from the authors upon request.

We have compared the denoising capabilities of the KEM
algorithm with two widely used algorithms, the higher-order
Yule-Walker �HOY� method �30� and the overdetermined
higher-order Yule-Walker method �31�. We find that the de-
noising capabilities of the KEM algorithm are superior. De-
tailed results will be presented elsewhere. In Fig. 3, we ex-
plicitly show that the KEM algorithm performs better than
the HOY method �see below�.

The KEM algorithm is applied to denoise the data shown
in Figs. 1 and 2. Figure 3 displays the same exact Granger
causality spectra �solid lines� as those in Fig. 1 and the
Granger causality spectra �dashed lines� obtained from the
denoised data using the KEM algorithm. Causality spectra
obtained using the HOY method are also shown �as dotted
lines�. It is clear that the KEM method performs better. In
Fig. 4, the solid lines again represent the same exact Granger
causality as that in Fig. 2 and the dashed lines represent the
Granger causality spectra obtained from the denoised data of
a bivariate AR�2� process. We see that the correct causal
directions are recovered and that the denoised spectra are
reasonably close to the true causality spectra for both AR�1�
and AR�2� processes. We stress that these results are
achieved without assuming any knowledge of the VAR mod-
els �Eqs. �19� and �33�� that generated the original time series
data.

V. CAUSAL RELATIONS IN A NEURAL
NETWORK MODEL

In this section, we analyze the effect of noise on time
series generated by a neural network model. We first demon-
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FIG. 3. Granger causality spectra for the bivariate AR�1� pro-
cess in Fig. 1. �a� Causality of X→Y. �b� Causality of Y →X. The
solid lines represent true causality spectra and the dashed lines rep-
resent spectra obtained from the denoised data using the KEM al-
gorithm. The dotted lines represent spectra obtained using the HOY
algorithm.
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strate the effect of measurement noise on causality directions
and then the effect of applying the KEM algorithm on the
noisy data.

Our simulation model comprises two coupled cortical col-
umns where each column is made up of an excitatory and an
inhibitory neuronal population �32�. The equations governing
the dynamics of the two columns are given by

ẍi + �a + b�ẋi + abxi = − keiQ„yi�t�,Qm0… + kijQ„xj�t�,Qm0…

+ �xi
�t� , �36�

ÿi + �a + b�ẏi + abyi = kieQ„xi�t�,Qm0… + �yi
�t� , �37�

where i� j=1,2. Here x and y represent local field potentials
of the excitatory and inhibitory populations, respectively,
kie�0 gives the coupling gain from the excitatory �x� to the
inhibitory �y� population, and kei�0 is the strength of the
reciprocal coupling. The neuronal populations are coupled
through a sigmoidal function Q�x ,Qm0� which represents the
pulse densities converted from x with Qm0 a modulatory pa-
rameter. The function Q�x ,Qm0� is defined by

Q�x,Qm0� = �Qm0�1 − e−�ex−1�/Qm0� if x � − u0,

− 1 if x � − u0,
� ,

�38�

where u0=−ln�1+ln�1+1/Qm0��. The coupling strength kij is
the gain from the excitatory population of column j to the
excitatory population of column i, with kij =0 for i= j. The
terms ��t� represent independent Gaussian white noise inputs
given to each neuronal population.

The parameter values used were a=0.22/ms, b
=0.72/ms, kie=0.1, kei=0.4, k12=0 , k21=0.25, and Qm0=5.
The standard deviation for the Gaussian white noise was
chosen as 0.2. Assuming a sampling rate of 200 Hz, 200

realizations of the signals were generated, each of length
30 s �6000 points�.

We now restrict our attention to the variables x1�t� and
x2�t�. Measurement noises �Gaussian white noises with stan-
dard deviations 2.0 and 3.0, respectively� were added to
these variables. From the model it is clear that x1�t� should
drive x2�t� since k12=0 while k21=0.25. The results of apply-
ing Granger causality analysis �using a VAR model of order
7� on these two variables are shown in Fig. 5. The solid lines
represent the causality spectra for the noise-free data. The
dashed lines represent the causality spectra for the noisy
data. It is clear that the measurement noise has an effect on
the causal relations by significantly reducing the true causal-
ity magnitude. In contrast to the example in Section III, how-
ever, no spurious causal direction is generated here, despite
the fact that both time series are contaminated by measure-
ment noise. Next, we applied the KEM algorithm to denoise
the noisy data. When Granger causality analysis is performed
on the denoised data, we obtain causality spectra that are
closer to the true causality spectra �see Fig. 6�. We note that
the KEM algorithm is not able to completely remove the
noise as the denoised spectra are still quite different from the
true spectra.

To show that the denoised Granger spectrum is signifi-
cantly different from that of the noisy data we use the boot-
strap approach �33� to establish the significant difference be-
tween the two peaks observed in the Granger causality
spectra of Figs. 5 and 6 �shown by dashed lines in these
figures�. One thousand resamples of noisy data and the de-
noised data were generated by randomly selecting trials with
replacement. It should be noted that in any selected trial, the
entire multichannel data are taken, thus preserving the auto-
and cross-correlation structures. Thus, we employ a version
of the block bootstrap method �33�. The peak values of
Granger causality were computed for each resample using
both noisy data and denoised data. Let us denote these peak
values by the random variables Z1 and Z2, respectively. The
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FIG. 4. Granger causality spectra for the bivariate AR�2� pro-
cess in Fig. 2. �a� Causality of X→Y. �b� Causality of Y →X. The
solid lines represent true causality spectra and the dashed lines rep-
resent spectra obtained from the denoised data using the KEM
algorithm.
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FIG. 5. Granger causality spectra for noisy data from a neural
network model. �a� Causality of x1→x2. �b� Causality of x2→x1.
The solid lines represent true causality spectra �noise-free data� and
the dashed lines represent spectra from noisy data.
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two-population Student t test was performed to determine
whether the means of Z1 and Z2 are different at a statistically
significant level.

The null hypothesis was that the means of the two popu-
lations Z1 and Z2 are equal. The t value was found to be very
large, 4.6446	103, and corresponds to a two-tailed p value
less than 0.0001. Thus the null hypothesis that the two
groups do not differ in mean is rejected. This establishes the
fact that the peak of the Granger causality spectrum of the
denoised data is significantly higher than that of the noisy
data. Figure 7 shows the plot of Granger causality for the
direction x1→x2 along with 95% confidence intervals. The

95% confidence intervals are calculated as Ix1→x2
�f�±1.96�B

�for each frequency f� where �B is the sample standard de-
viation of the 1000 bootstrap replications of Ix1→x2

�f�.

VI. CONCLUSIONS

Our contributions in this paper are twofold. First, we
demonstrate that measurement noise can significantly impact
Granger causality analysis. Based on analytical expressions
linking noise strengths and the VAR model parameters, it
was shown that spurious causality can arise and that true
causality can be suppressed due to noise contamination. Nu-
merical simulations were performed to illustrate the theoret-
ical results. Second, a practical solution to the measurement
noise problem, called the KEM algorithm, was outlined,
which combines the Kalman filter theory with the expecta-
tion and maximization algorithm. It was shown that the ap-
plication of this algorithm to denoise the noisy data can sig-
nificantly mitigate the deleterious effects of measurement
noise on Granger causality estimation. It is worth noting that,
despite the fact that the adverse effect of measurement noise
on Granger causality has been known since 1978 �16�, miti-
gation of this effect has received little attention. The KEM
algorithm described in this paper is our attempt at addressing
this shortcoming.
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APPENDIX

In this appendix, we derive the expressions for P3�B� and
P4�B� given in Eq. �20�. We first determine P4�B�. When a
zero-mean white noise process ���t� with variance ���

2 is
added to Y�t� we get

Y�c��t� = Y�t� + ���t� . �A1�

Applying �1−dB� on both sides of the above equation we get

�1 − dB�Y�c��t� = �1 − dB�Y�t� + �1 − dB����t�

= ��t� + �1 − dB����t� . �A2�

We now determine a white noise process ��c��t� such that

��t� + �1 − dB����t� = �1 − d�B���c��t� . �A3�

We need to determine d� and ���c�
2 .

Taking variances on both sides of the above equation we
get

��
2 + �1 + d2����

2 = �1 + d�2����c�
2 . �A4�

Taking the autocovariance at lag 1 on both sides we obtain

d���
2 = d����c�

2 . �A5�

Since ��c� is a sum of � and �1−dB���, we have ���c�
2

����
2 . This implies that 
d�
� 
d
. Since stationarity of the
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represent true causality spectra �noise-free data� and the dashed
lines represent spectra obtained from denoised data using the KEM
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AR process requires 0� 
d
�1, we obtain the inequality 0
� 
d�
� 
d�
�1. Further, d� has the same sign as d.

We have

���c�
2 =

d

d�
���

2 . �A6�

Substituting in the variance equation we get

�1 + d�2�
d

d�
���

2 = �1 + d2����
2 + ��

2 , �A7�

that is,

� 1

d�
+ d�	 = �1

d
+ d	 +

1

d

��
2

���
2 . �A8�

Let

s � �1

d
+ d	 +

1

d

��
2

���
2 .

This gives

� 1

d�
+ d�	 = s . �A9�

Hence

d� =
s ± �s2 − 4

2
. �A10�

Note that 
s
�2 for any values of d, ��
2 , and ���

2 . There-
fore �s2−4 and hence d� are well defined. Further, since

d�
� 
d
 if d is positive, d�= �s−�s2−4� /2 is the only valid
solution. If d is negative, d�= �s+�s2−4� /2 is the only valid
solution.

Next, we derive the expression for P3�B�. First, we first
need to rewrite X�t� as an univariate process, i.e., we need to
determine P1�B�:

P1�B�X�t� = ��t� , �A11�

where ��t� is a zero-mean white noise process and

X�t� = aX�t − 1� + bY�t − 1� + E1�t� . �A12�

Here E1�t� is a zero-mean white noise process with variance
�


2. We have already seen that

�1 − dB�Y�t� = ��t� . �A13�

The equation for X�t� can be written as

�1 − aB�X�t� = bY�t − 1� + E1�t� . �A14�

Substituting the expression for Y�t−1� we obtain

�1 − aB�X�t� = b�1 − dB�−1��t − 1� + E1�t� . �A15�

We now find a white noise process ��t� with variance ��
2

such that

b�1 − dB�−1��t − 1� + E1�t� = �1 − rB�−1��t� . �A16�

To determine r and ��
2, we take the variance and autocova-

riance at lag 1 on both sides. Taking the variance we obtain

b2��
2

�1 − d2�
+ �


2 =
��

2

�1 − r2�
. �A17�

Taking the autocovariance at lag 1 and assuming that �
�

�the cross covariance between E1 and �� is zero for simplic-
ity, we get

b2��
2d

�1 − d2�
=

��
2

�1 − r2�
, �A18�

which can be written as

��
2

�1 − r2�
=

b2��
2d

�1 − d2�r
. �A19�

Substituting in the variance equation we obtain

b2��
2

�1 − d2�
+ �


2 =
b2��

2

�1 − d2�
d

r
. �A20�

Thus

r =
b2d��

2

b2��
2 + �1 − d2��1

2 . �A21�

If b=0, we get r=0 and ��
2=�1

2 as expected. Similarly if d
=0, we get r=0 and ��

2=�1
2+b2��

2 as expected. Once r is
known, ��

2 is given by

��
2 = �1 − r2�� b2��

2

�1 − d2�
+ �1

2	 . �A22�

We finally have

�1 − aB�X�t� = �1 − rB�−1��t� . �A23�

That is,

P1�B�X�t� = ��t�, P1�B� = �1 − rB��1 − aB� . �A24�

Consider a white noise process ���t� �which is uncorre-
lated with X�t�� with variance ���

2 . This is added to X�t� to
obtain the noisy process X�c��t�:

X�c��t� = X�t� + ���t� . �A25�

Applying P1�B� on both sides of the above equation,

P1�B�X�c��t� = ��t� + P1�B����t� . �A26�

We need to find a zero-mean white noise process ��c��t� with
variance ���c�

2 such that

��t� + P1�B����t� = P3�B���c��t� . �A27�

Let

P3�B� = 1 + a1�B + a2�B
2. �A28�

We have

��t� + �1 − �a + r�B + arB2����t� = �1 + a1�B + a2�B
2���c��t� .

�A29�

Taking the variances on both sides we get
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��
2 + �1 + �a + r�2 + a2r2����

2 = �1 + a1�
2 + a2�

2����c�
2 .

�A30�

Taking the autocovariance at lag 1 on both sides we obtain

− �a + r����
2 − ar�a + r����

2 = a1����c�
2 + a1�a2����c�

2 .

�A31�

This can be rewritten as

− �a + r��1 + ar����
2 = a1��1 + a2�����c�

2 . �A32�

Taking the autocovariance at lag 2 on both sides

ar���
2 = a2����c�

2 , �A33�

which gives

���c�
2 =

ar

a2�
���

2 . �A34�

Since ���c�
2

����
2 , we see that 
a2�
� 
ar
 and a2� has the same

sign as ar.
Substituting the last equation in Eqs. �A32� and �A30� we

obtain

− �a + r��1 + ar����
2 = a1��1 + a2��

ar

a2�
���

2 , �A35�

and

��
2 + �1 + �a + r�2 + a2r2����

2 = �1 + a1�
2 + a2�

2�
ar

a2�
���

2 .

�A36�

Thus we get

a1��1 + a2��
a2�

= −
�a + r��1 + ar�

ar
�A37�

and

�1 + a1�
2 + a2�

2�
a2�

=
�1 + �a + r�2 + a2r2�

ar
+

1

ar

��
2

���
2 .

�A38�

We can solve these two equations for a1� and a2�. There will
be multiple solutions. We choose that solution for which


a2�
� 
ar
. Further, the solution has to be such that the roots
of 1+a1�B+a2�B

2=0 lie outside the unit circle. The last con-
dition is required for the invertibility of the moving average
�MA� process �1+a1�B+a2�B

2���c��t�. The expressions for a1�
and a2� obtained by solving the above equations are very long
and therefore we do not list them here. However, we can
easily obtain the asymptotic behavior of these solutions as
follows.

For our bivariate AR�1�process to be stable, we require
that the roots of

det��I − A�1�� = 0 �A39�

lie within the unit circle, i.e., the eigenvalues of A�1� should
have absolute value less than 1. In our case

A�1� = �a b

0 d
	 ,

which is an upper triangular matrix. Hence the eigenvalues
are a and d. Therefore, for stability we require that 
a
�1
and 
d
�1.

As already derived, we have

r = d� b2��
2

b2��
2 + �1 − d2���

2	 . �A40�

Since 
d
�1, the term within parentheses is always positive
and less than 1. It becomes zero only when b=0. Hence 
r

� 
d
 and r has same sign as d. As 
d
→1, 
r
→1. As 
d

→0 or 
b
→0, we see that 
r
→0.

We have already seen that 
a2�
� 
ar
. Since 
r
� 
d
, we
obtain the further results that 
a2�
� 
a

d
 and a2� has same
sign as ad. Since 
a
 , 
d
�1, we get

0 � 
a2�
 � 
a

d
 � 1.

As 
a
 , 
d
→1, 
a2�
 also →1. As a→1, d→1, and the ratio
��

2 /���
2 →0, we have

a1� → − 2; a1� → 1.

As the variance ratio →�

a1� → 0; a2� → 0,

as expected. The parameter a1� is hardly affected by the value
of the parameter b. On the other hand, a2�→0 as b→0 and
saturates rapidly for b�0.5.
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